
Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: AIR Phone Book application - Part 2 (Functions and WebService)

AIR Phone Book application - Part 2 (Functions and
WebService)

Posted At : 3 April 2009 15:13 | Posted By : Shaun McCran
Related Categories: Flex Remoting, AIR, RIA, Flex

As our application starts I want to fire the request for data, so we call an
init() method on initialization. Also I have turned the flex chrome off here

with 'showFlexChrome="false"'.

The init() method calls an event listener that
controls the window movement (Drag and drop) and

makes a call to getData().

import mx.controls.Alert;
 import mx.collections.*;

 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 import mx.collections.ArrayCollection;

 [Bindable]
 private var loadedData:ArrayCollection;

 public function init():void
 {

 // start the move listener
 moveListener()

 // get the remote data
 getData()

 }

The moveListener() method adds a listener to the
outerCanvas element which forms the application

'border'. When this event is fired it calls
moveWindow.

Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: AIR Phone Book application - Part 2 (Functions and WebService)

The getData() function calls the webservice, and
specifies which method to call.

 public function moveListener():void
 {

 // mover event
 outerCanvas.addEventListener(MouseEvent.MOUSE_DOWN, moveWindow);

 }

 public function getData():void
 {

 popData.getData();
 }

 public function moveWindow(event:MouseEvent):void
 {

 var str:String = event.target.valueOf();

 // if its a datagrid then don't do the move
 if (str.search("displayPeople") >= 1)

 {
 // Do nothing

 }
 else
 {

 stage.nativeWindow.startMove();
 }

 }

The moveWindow function also contains a check to see
if the datagrid was the event target, as this was
interfering with the functionality of the Datagrid.
It would be interesting to see if anyone else has a
more elegant solution to this, rather than a specific

element check.

Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: AIR Phone Book application - Part 2 (Functions and WebService)

To populate our datagrid we need to use a data
provider. In FLEX applications I usually use the
RemoteObject function, but for AIR I've been using

the WebService tag.

 <mx:WebService id="popData" wsdl="http://url/wld/services/phoneBook.cfc?wsdl" showBusyCursor="true" useProxy="false">
 <mx:operation name="getData" fault="faultHandler(event)" result="resultsHandler(event)" />

 </mx:WebService>

The final two 'chrome' functions we need are the
minimize and close functions. I will detail handling

custom chrome in another article.

 public function onMinimize():void
 {

 stage.nativeWindow.minimize();
 }

 public function onClose():void
 {

 stage.nativeWindow.close();
 }

Our WebService is referencing two functions. A
results handler and a fault handler.

Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: AIR Phone Book application - Part 2 (Functions and WebService)

 public function resultsHandler(event:ResultEvent):void
 {

 // trace(event.result)
 displayPeople.dataProvider = popData.getData.lastResult

 }

 public function faultHandler(event:FaultEvent):void
 {

 Alert.show("Error: " + event.fault.faultString, "Application Error");
 }

The resultsHandler() simply assigns the datagrids
dataprovider as the result of the WebService call. By

adding DataGridColumn's to the datagrid with the
right naming convention our results from the returned

query object will map directly to our datagrid.

The faultHandler() function simply Alerts a user to a
fault event.

Lastly I have a function that assigns the image
source dynamically based on the click event in the

datagrid.

 public function changeImage(img:String):void
 {

 userImage.visible = true
 userImage.source = "http://url/wld/phonebook/" + img

 }

Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: AIR Phone Book application - Part 2 (Functions and WebService)

So that completes the Phone Book AIR application.
There are one or two tweaks I'd like to make in the
image handling, but otherwise its exactly the spec I

had in mind.

You can view the full code .here

http://www.mccran.co.uk/index.cfm/2009/4/3/AIR-Phone-Book-application--Part-3-Full-code

