
Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: Adding custom Chrome to your AIR application

Adding custom Chrome to your AIR application
Posted At : 6 April 2009 12:23 | Posted By : Shaun McCran

Related Categories: AIR, RIA

Whilst creating my last AIR application I found that the standard 'Chrome'
that is provided by the OS just didn't match the application look and feel

at all.

After a little searching I found that there are a few key elements in your
application that you need to change to remove the standard operating

system Chrome, and stop Flex builder from replacing it with its own.

Firstly in your document look for the 'systemChrome' application-app.xml
xml value. Setting this to none will disable the operating system Chrome.
As we are using the 'WindowedApplication' Flex builder will automatically

start using its own Chrome framework, so we need to turn that off too.

<!-- The type of system chrome to use (either "standard" or "none"). Optional. Default standard. -->
<systemChrome>none</systemChrome>

<!-- Whether the window is transparent. Only applicable when systemChrome is none. Optional. Default false. -->
<transparent>true</transparent>

This is done in the WindowedApplication code, set showFlexChrome="
false" and that will disable Flex from using its default Chrome.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" initialize="init()" showFlexChrome="false">

Now that we have completely turned it all off, we need to build our own.
In this application I am using a canvas with rounded corners that is 15

Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: Adding custom Chrome to your AIR application

pixels larger than the application canvas, to give the impression of a
border all the way around. Inside that canvas I've added two controls.

<mx:Label text="_" styleName="controls" toolTip="Minimize" x="173" y="-2" click="onMinimize()" />
<mx:Label text="X" styleName="controls" toolTip="Close" x="184" y="1" click="onClose()" />

These simply replicate the functionality that the minimise and close
buttons give a user on a standard window. The functions they call are:

public function onMinimize():void
 {

 stage.nativeWindow.minimize();
 }

 public function onClose():void
 {

 stage.nativeWindow.close();
 }

And with that you fully customise the look and feel of your applications
Chrome.

