
Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: Cross site AJAX HttpRequest problems and how to create a Proxy handler

Cross site AJAX HttpRequest problems and how to create a
Proxy handler

Posted At : 19 July 2010 15:36 | Posted By : Shaun McCran
Related Categories: JQuery, Coldfusion, Json, AJAX

Most of us are familiar with the AJAX post() and getJSON() methods of
remotely calling and passing around data, I use them with abundance

when building applications. One thing I had not considered until recently
is that all my AJAX Http requests are usually internal to that application,

which also means they are on the same server and domain.

I recently jumped into a project where the application spanned 24
domains, and had been developed to use a core component library to
help code re use. The problem with this arose when you are on one
domain (www.domain1.com) and you want to make a request to a

different domain (www.domain2.com). You encounter something called
the 'same-Origin' policy.

This article deals with how to create a proxy to handle cross site AJAX
http Requests.

The 'same-origin' Policy (http://en.wikipedia.org/wiki/Same_origin_policy
) dictates that only scripts running on the same server can access each
others methods and properties. So it basically blocks AJAX requests to

'foreign' domains.

There is no such restriction to server side http requests though, so
instead of having AJAX make the request, we create a CFC proxy, that

typically uses cfhttp to go get the data we want, and return it to our AJAX
function.

In the code I was using to do this I am using the serialize JQuery function
to suck up all the form fields and spit them at my 'foreign.cfc' (names

have been changed).

http://en.wikipedia.org/wiki/Same_origin_policy

Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: Cross site AJAX HttpRequest problems and how to create a Proxy handler

I'm also passing in the name of the method that the proxy should call,
and the URL of the remote url, so that it is basically a generic Proxy

object.

<InvalidTag language="javascript">
$(document).ready(function() {

 $('input').change(function() {

 // ajax request $.post('proxy.cfc?method=send&remoteMethod=remoteMethodName&url=http://www.otherDomain/foreign.cfc',$("#searchForm ").serialize(),function(data,status){

 $("#result").text(data);

 });
 })

});
</script>

<form name="searchForm" id="searchForm">
 Form fields.....

</form>

Because of this I don't actually know what the arguments going into the
proxy cfc are.

<cffunction name="send" access="remote" output="true" returntype="query" hint="proxy handler to foreign data resources">

<cfargument name="remoteMethod" type="string" required="false" hint="name of the remote method to call">
<cfargument name="url" type="string" required="false" hint="url of the remote method to call">

<cfset var response = "">

<!--- there will be a whole load of values in the arguments scope that aren't coded they are generated dynamically using jquery.serialise so we don't know what they are. Instead we are going to loop over the args, and pass them through the cfhttp request --->

<cfhttp url="#arguments.url#" method="get">
<cfhttpparam type="url" name="method" value="#arguments.remoteMethod#">

 <cfloop collection="#arguments#" item="item">
 <cfhttpparam type="url" name="#item#" value="#arguments[item]#">

 </cfloop>
</cfhttp>

 <cfset response = trim(cfhttp.fileContent)>
 <cfoutput>#response#</cfoutput>
 <!--- <cfreturn response> --->

</cffunction>

Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: Cross site AJAX HttpRequest problems and how to create a Proxy handler

In this way we have a re usable proxy that will hand off remote requests
and pass back the data to the calling AJAX function.

Browser specific fixes

Most of the modern browsers have a browser specific work around
available to them. John Resig has an interesting (slightly older) article

here () about how to use http://ejohn.org/blog/cross-site-xmlhttprequest/
headers to allow cross site access to and from a domain.

Creating a browser specific fix seems like a lot of hard work, and
introducing multiple blocks of browser dependant code to fix the same

issue smacks of the old CSS days, and I can't really recommend it, when
there are far more elegant solutions available.

Access Denied in Internet Explorer

This will also fix an erroneously reported Internet Explorer error. If
Internet Explorer reports that "Access is denied" to the JQuery.js library

this is in fact incorrect.

It is reporting the http status code error from the cross site http Request
and mistakenly reporting that the parent object has created the access

denied message, when it is in fact only the httpRequest encountering the
'same-origin' policy.

Another alternative is to use JSON-P

Not sure what JSON-P is? Ray Camden has written a great article
explaining it on the O'Reilly site: http://insideria.com/2009/03/what-in-the-

heck-is-jsonp-and.html

The basic premise is that you can dynamically create script blocks, and
point them at whatever domain you want, in this way you can create

cross site AJAX requests.

http://ejohn.org/blog/cross-site-xmlhttprequest/
http://insideria.com/2009/03/what-in-the-heck-is-jsonp-and.html
http://insideria.com/2009/03/what-in-the-heck-is-jsonp-and.html

Blog of Shaun McCran - Architecting robust, elegant technical and business solutions: Cross site AJAX HttpRequest problems and how to create a Proxy handler

Personally I don't think this is as elegant a solution as a Proxy handler,
also building a Proxy allows you to alter the data in a server side request,

and supply clean data in the format you actually need, rather than
introducing additional client side processing.

